
One of the most infuriating problems i have come across in my programming career is COMPLICATED
descriptions of how to do something in a programming language , take a look at any help file in most programming
language's and try to figure out a description , sometimes i wonder if they're there to confuse.

I made the transition from Visual Basic to C/C++ because i needed to do things that were just not possible in VB or
were far too slow eg :- in VB 3.0 try to find the free space on a given drive , not easy , try the same from C++ and its
dead simple.

So i started to learn C , not easy but i made progress then i realised that in a lot of cases i would need to write DLL's ,
which i thought would be really easy to do , not so , mainly because of the lack of SIMPLE examples , (I find that i
learn a language much much quicker (I currently have experience in 4 programming language's , Assembly , Visual
Basic , C/C++ & Pascal/Delphi and this in itself can lead to problem's) , if i can work from a simple example then
modify it to suit my own need's.

To this end i have wrote this paper to help anyone who is trying to write a 32 bit dll using the C/C++ language , i
do not have the time to write a paper fully explaining all of the intricacies of 32bit dll's youll have to gleam that
information from somewhere else , what i will do is make it easy for you to have a working dll in just a few minute's
with minimal fuss.

Note this next section assumes you are using the Borland compiler , minimal alterations should be needed to the CPP file
to have it compile successfully on other compilers.

There is one important consideration to decide upon before even writing a line of code , that decision is wether
you intend to use c or cpp node (c node = C source file or cpp node = C++ source file) , i would always recommend you
to use c node unless you have a specific reason for wanting to use object orientated code , using C node simplifies the
way that function declarations are made and minimises the risk of mistakes , using C node is
explained first then CPP node.

First off as in all C/C++ windows programming you need the following declaration

#include < windows.h >

Next forward declare any functions to be used , only 1 in this example

int WINAPI _export TimesTwo(int x);

Next the 32bit Dll should have a DllEntryPoint function this replaces the WinMain function in an EXE file or if youv'e
written a 16bit dll previously LibMain.
(DllEntryPoint is called by the system when processes and threads are initialized and terminated , 16Bit dll's use
LibMain and WEP.)

BOOL WINAPI DllEntryPoint(HINSTANCE hinstDLL,DWORD fdwReason,LPVOID lpvReserved)
{

Now you should place a switch statement like so
switch (fdwReason)
{
case DLL_PROCESS_ATTACH:

{
 // place here any code that initialises the dll as its first mapped into process's adress

 break;
}

 case DLL_THREAD_ATTACH:
{

 //place here code that initialises the dll when a new thread is created

 break;
 }

case DLL_PROCESS_DETACH:
{

 //place here code that cleans up when the dll is removed
 break;
 }
 case DLL_THREAD_DETACH:

{
 //place here code that cleans up when a thread is finished
 break;
 }
}

return TRUE;

}

// end of dllEntryPoint

For 32-bit programs, Windows calls DllEntryPoint each time the DLL is loaded and unloaded , each time a process
attaches to or detaches from the DLL, or each time a thread within the process is created or destroyed.

Now place a function callable by visual basic , let's keep it simple and to the point , make the function multiply
a given number by 2

int WINAPI _export TimesTwo(int x)
{
return x * 2;
}

Next decide wether you want a Module Definition file or not , if you do one like below will suffice (for 16bit
programmers a DEF file is NOT required although you can have one if you want eg to place a description in the compiled
file).

LIBRARY PCE32
DESCRIPTION 'SAMPLE 32BIT DLL © PC-Enterprises / Paul Collishaw 1996/1997'
CODE PRELOAD MOVABLE DISCARDABLE
DATA PRELOAD SINGLE
EXPORTS
 ; The names of the Dll functions , just 1 in this case
 TimesTwo

That's all there is to writing a simple 32bit dll , it's really very easy , but all of the manual's or help files make it look
really hard , in fact when i made the transition from 16 bit to 32 bit dll's i must admit i was baffled for quite a while ,
but once i'd seen a simple example and deciphered the manual's it all fell into place.

Now a word of warning , or rather two word's of warning NAME MANGLING , the cause of me banging my head
against my desk as i was trying to figure out how to write a (16 bit) dll for the very first time and shouting out
"why the !@!**!!!!!!!!**@ wont it work"

At the time i tried all sorts of fixes , none of which worked , until i read a simple explanation which went something
like this.

If you select C++ as your target language , the compiler will indulge in a neat little trick called Name Mangling ,

what this mean's is that the compiler adds extra bits of information onto the name of a function to record the
parameter types that have been used , now normally this doesn't matter as C++ programs that call the function
know and use name mangling themselves so a problem doen't arise.

What does matter is when the function is called outside of C++ , for example VB , in this case VB will report that it
 can't find the specified function , all is not lost though there is a solution to the problem , turn off Name Mangling.

You turn off Name Mangling by adding extern "C" to the beginning of the function declarations.

(The forward declaration)

EG :- change int WINAPI _export TimesTwo(int x);

 to extern "C" int WINAPI _export TimesTwo(int x);

(and in the function itself)

 FROM
 int WINAPI _export TimesTwo(int x)
 {

 TO

 extern "C" int WINAPI _export TimesTwo(int x);
 {

Visual Basic will now recognise the function , that's Name Mangling , seem's reall'y easy once it's explained
simply but try deciphering it from a manual.

Ive included a sample program (C node) based on the above explanation called PCE32.DLL , also included is
a simple Visual Basic program called Call32dll.vbp , use this to call the dll.

Try them out they both work and have comment's where needed to help you along.

HAPPY PROGRAMMING.

